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• Subgaussian and Subgamma Random Variable

• The Entropy Method

• Talagrand’s Inequality

• Applications: LIS and TSP



Subgaussian Random Variable
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A random variable 𝑋𝑋 is called 𝜎𝜎2-subgaussian if its log-MGF satisfies
𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 exp 𝜃𝜃 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≤ ⁄𝜃𝜃2𝜎𝜎2 2 ∀𝜃𝜃 ∈ ℝ

We call 𝜎𝜎2 the variance proxy. 

Equivalently,

• Pr 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≥ 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕2𝜎𝜎2

• 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑘𝑘 ≤ 𝜎𝜎𝑘𝑘𝑘𝑘 ⁄𝑘𝑘 2  for any 𝑘𝑘 ∈ ℤ+

Examples:

• True Gaussian random variable 𝒩𝒩 0,𝜎𝜎2

• Bounded random variable: if 𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 a.s., then 𝑋𝑋 is ⁄𝑏𝑏 − 𝑎𝑎 2 4-subgaussian



Subgaussian Random Variable
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A random variable 𝑋𝑋 is called 𝜎𝜎2-subgaussian if its log-MGF satisfies
𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 exp 𝜃𝜃 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≤ ⁄𝜃𝜃2𝜎𝜎2 2 ∀𝜃𝜃 ∈ ℝ

We call 𝜎𝜎2 the variance proxy. 

Equivalently,

• Pr 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≥ 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕2𝜎𝜎2

• 𝔼𝔼 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝑘𝑘 ≤ 𝜎𝜎𝑘𝑘𝑘𝑘 ⁄𝑘𝑘 2  for any 𝑘𝑘 ∈ ℤ+

Lemma.  If 𝑋𝑋1,𝑋𝑋2 are independent subgaussian random variables with variance proxy 𝜎𝜎12 and 𝜎𝜎22, 
then 𝑋𝑋1 + 𝑋𝑋2 is 𝜎𝜎12 + 𝜎𝜎22 -subgaussian 

 It immediately recovers the Hoeffding’s inequality



Subgamma Random Variable
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A random variable 𝑋𝑋 is called 𝜎𝜎2, 𝑐𝑐 -subgamma if

𝜓𝜓 𝜃𝜃 ≤
𝜃𝜃2𝜎𝜎2

2 1 − 𝜃𝜃 𝑐𝑐 ≤
𝜃𝜃2𝜎𝜎2

2  ∀ 𝜃𝜃 < ⁄1 𝑐𝑐

It holds that

Pr 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≥ 𝑡𝑡 ≤ 2 max 𝑒𝑒−
𝑡𝑡2
2𝜎𝜎2 , 𝑒𝑒−

𝑡𝑡
2𝑐𝑐

Examples:

• If 𝑋𝑋 ∼ 𝒩𝒩 0,1 , then 𝑋𝑋2 is 4,3 -subgamma

• If 𝑋𝑋 is 𝜎𝜎2-subgaussian, then 𝑋𝑋 is 𝜎𝜎2, 0 -subgamma

• Bounded random variable: if 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≤ 𝑏𝑏 a.s., then 𝑋𝑋 is Var 𝑋𝑋 , ⁄𝑏𝑏 3 -subgamma

• If 𝑋𝑋 is 𝜎𝜎2, 𝑐𝑐 -subgamma, then 𝛼𝛼𝛼𝛼 is 𝛼𝛼2𝜎𝜎2,𝛼𝛼𝛼𝛼 -subgamma
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A random variable 𝑋𝑋 is called 𝜎𝜎2, 𝑐𝑐 -subgamma if

𝜓𝜓 𝜃𝜃 ≤
𝜃𝜃2𝜎𝜎2

2 1 − 𝜃𝜃 𝑐𝑐 ≤
𝜃𝜃2𝜎𝜎2

2  ∀ 𝜃𝜃 < ⁄1 𝑐𝑐

It holds that

Pr 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≥ 𝑡𝑡 ≤ 2 max 𝑒𝑒−
𝑡𝑡2
2𝜎𝜎2 , 𝑒𝑒−

𝑡𝑡
2𝑐𝑐

Lemma.  If 𝑋𝑋1,𝑋𝑋2 are independent subgamma random variables with parameters 𝜎𝜎12, 𝑐𝑐1  and 
𝜎𝜎22, 𝑐𝑐2 , then 𝑋𝑋1 + 𝑋𝑋2 is 𝜎𝜎12 + 𝜎𝜎22, max 𝑐𝑐1, 𝑐𝑐2 -subgamma 

 It immediately recovers the Bernstein inequality
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• Subgaussian and Subgamma Random Variable

• The Entropy Method

• Talagrand’s Inequality

• Applications: LIS and TSP



The Entropy Method
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The entropy of a random variable 𝑋𝑋 is defined as
Ent 𝑋𝑋 ≔ 𝔼𝔼 𝑋𝑋 log𝑋𝑋 − 𝔼𝔼 𝑋𝑋 log𝔼𝔼 𝑋𝑋

Lemma (Herbst).  Suppose that

Ent 𝑒𝑒𝜃𝜃𝜃𝜃 ≤
𝜃𝜃2𝜎𝜎2

2 𝔼𝔼 𝑒𝑒𝜃𝜃𝑋𝑋  ∀𝜃𝜃 ≥ 0

Then, 𝑋𝑋 is 𝜎𝜎2-subgaussian.

Tensorization of entropy

• For a function 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , and for each 𝑖𝑖 ∈ 𝑛𝑛 , define
Ent𝑖𝑖 𝑓𝑓 𝑥𝑥 ≔ Ent 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛

• For independent random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, we have

Ent 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Ent𝑖𝑖 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛



Proof of Herbst Lemma
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Proof.

• We’ll verify that 𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 exp 𝜃𝜃 𝑋𝑋 − 𝔼𝔼 𝑋𝑋 ≤ ⁄𝜃𝜃2𝜎𝜎2 2

• 𝜓𝜓 𝜃𝜃 = log𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃 𝑋𝑋

d
d𝜃𝜃

𝜓𝜓 𝜃𝜃
𝜃𝜃

=
𝔼𝔼 𝑋𝑋𝑒𝑒𝜃𝜃𝜃𝜃

𝜃𝜃𝜃𝜃 𝑒𝑒𝜃𝜃𝜃𝜃
−
𝔼𝔼 𝑋𝑋
𝜃𝜃

−
log𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃

𝜃𝜃2
+
𝔼𝔼 𝑋𝑋
𝜃𝜃

=
𝔼𝔼 𝑋𝑋𝑒𝑒𝜃𝜃𝜃𝜃

𝜃𝜃𝜃𝜃 𝑒𝑒𝜃𝜃𝜃𝜃
−

log𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃

𝜃𝜃2

• Ent 𝑒𝑒𝜃𝜃𝜃𝜃 = 𝜃𝜃𝔼𝔼 𝑋𝑋𝑒𝑒𝜃𝜃𝜃𝜃 − 𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃 log𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃

• Thus,  d
d𝜃𝜃

𝜓𝜓 𝜃𝜃
𝜃𝜃

= Ent 𝑒𝑒𝜃𝜃𝜃𝜃

𝜃𝜃2𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃
≤ 𝜎𝜎2

2
 by assumption

• Then, we have

𝜓𝜓(𝜃𝜃)
𝜃𝜃

= �
0

𝜃𝜃 Ent 𝑒𝑒𝜏𝜏𝑋𝑋

𝜏𝜏2𝔼𝔼 𝑒𝑒𝜏𝜏𝑋𝑋
d𝜏𝜏 ≤ �

0

𝜃𝜃 𝜎𝜎2

2
d𝜏𝜏 =

𝜃𝜃𝜎𝜎2

2
∎



The Entropy Method
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Lemma (Discrete Modified log-Sobolev (MLS) Inequality). Let 𝑓𝑓:ℝ → ℝ and let 
𝐷𝐷−𝑓𝑓 𝑥𝑥 ≔ 𝑓𝑓 𝑥𝑥 − inf

𝑦𝑦
𝑓𝑓 𝑦𝑦

Then for any random variable 𝑋𝑋,

Ent 𝑒𝑒𝑓𝑓 𝑋𝑋 ≤ Cov 𝑓𝑓 𝑋𝑋 , 𝑒𝑒𝑓𝑓 𝑋𝑋 ≤ 𝔼𝔼 𝐷𝐷−𝑓𝑓 𝑋𝑋 2𝑒𝑒𝑓𝑓 𝑋𝑋 ,

where Cov 𝑋𝑋,𝑌𝑌 = 𝔼𝔼 𝑋𝑋𝑋𝑋 − 𝔼𝔼 𝑋𝑋 𝔼𝔼 𝑌𝑌

Proof.

• For  the first inequality,

Ent 𝑒𝑒𝑓𝑓 = 𝔼𝔼 𝑓𝑓𝑒𝑒𝑓𝑓 − 𝔼𝔼 𝑒𝑒𝑓𝑓 log𝔼𝔼 𝑒𝑒𝑓𝑓 ≤ 𝔼𝔼 𝑓𝑓𝑒𝑒𝑓𝑓 − 𝔼𝔼 𝑒𝑒𝑓𝑓 𝔼𝔼 𝑓𝑓 = Cov 𝑓𝑓, 𝑒𝑒𝑓𝑓

• For the second inequality,

Cov 𝑓𝑓, 𝑒𝑒𝑓𝑓 = 𝔼𝔼 𝑓𝑓 − inf𝑓𝑓 𝑒𝑒𝑓𝑓 − 𝔼𝔼 𝑒𝑒𝑓𝑓 ≤ 𝔼𝔼 𝑓𝑓 − inf𝑓𝑓 𝑒𝑒𝑓𝑓 − 𝑒𝑒inf 𝑓𝑓

• The convexity of  𝑒𝑒𝑥𝑥 implies that 𝑒𝑒𝑓𝑓 − 𝑒𝑒inf 𝑓𝑓 ≤ 𝑒𝑒𝑓𝑓 𝑓𝑓 − inf𝑓𝑓 ∎



The Entropy Method: Sharper Bounded Differences
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Define one-sided differences for multivariate function:
𝐷𝐷𝑖𝑖−𝑓𝑓 𝑥𝑥 ≔ 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 − inf

𝑧𝑧
𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑧𝑧, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛

𝐷𝐷𝑖𝑖+𝑓𝑓 𝑥𝑥 ≔ sup
𝑧𝑧
𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑧𝑧, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 − 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Theorem (Bounded differences inequality).

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables. Then, 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is subgaussian with variance 
proxy 2 ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 2

∞. Moreover,

Pr 𝑓𝑓 − 𝔼𝔼 𝑓𝑓 ≥ 𝑡𝑡 ≤ exp −
𝑡𝑡2

4 ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖−𝑓𝑓
2

∞

Pr 𝑓𝑓 − 𝔼𝔼 𝑓𝑓 ≤ −𝑡𝑡 ≤ exp −
𝑡𝑡2

4 ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖+𝑓𝑓
2

∞
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Theorem (Bounded differences inequality).

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables. Then, 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is subgaussian with 
variance proxy 2 ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 2

∞

Theorem (McDiarmid inequality).

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables. Then, 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is subgaussian with 

variance proxy 1
4
∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 ∞

2

In many cases, ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 2
∞ can be much smaller than ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 ∞

2
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Theorem (Bounded difference inequality).

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables. Then, 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is subgaussian with variance 
proxy 2 ∑𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑓𝑓 2

∞

Proof.

• By the discrete MLS lemma, 
Ent𝑖𝑖 𝑒𝑒𝑓𝑓 ≤ 𝔼𝔼 𝐷𝐷𝑖𝑖−𝑓𝑓 2𝑒𝑒𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛

• By tensorization, for any 𝜃𝜃 ≥ 0,

Ent 𝑒𝑒𝜃𝜃𝜃𝜃 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Ent𝑖𝑖 𝑒𝑒𝜃𝜃𝜃𝜃 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

𝐷𝐷𝑖𝑖− 𝜃𝜃𝑓𝑓 2 𝑒𝑒𝜃𝜃𝜃𝜃 ≤ 𝜃𝜃2 �
𝑖𝑖=1

𝑛𝑛

𝐷𝐷𝑖𝑖−𝑓𝑓 2

∞

𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃

• We finish the proof by Herbst lemma. 

∎
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• Subgaussian and Subgamma Random Variable

• The Entropy Method

• Talagrand’s Inequality

• Applications: LIS and TSP
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Let 𝑉𝑉 be a fixed 𝑑𝑑-dimensional subspace. Let 𝒙𝒙 ∼ Unif −1,1 𝑛𝑛. How well is dist 𝒙𝒙,𝑉𝑉  
concentrated?

• Let 𝑃𝑃 be the orthogonal projection onto 𝑉𝑉⊥. Then, tr 𝑃𝑃 = dim 𝑉𝑉⊥ = 𝑛𝑛 − 𝑑𝑑

• dist 𝒙𝒙,𝑉𝑉 2 = 𝑃𝑃𝒙𝒙 ⋅ 𝑃𝑃𝒙𝒙 = 𝒙𝒙⊤𝑃𝑃𝒙𝒙 = ∑𝑖𝑖,𝑗𝑗∈ 𝑛𝑛 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑃𝑃𝑖𝑖𝑖𝑖

• Thus, 𝔼𝔼 dist 𝑥𝑥,𝑉𝑉 2 = ∑𝑖𝑖∈ 𝑛𝑛 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑛𝑛 − 𝑑𝑑

How well is dist 𝒙𝒙,𝑉𝑉  concentrated around 𝑛𝑛 − 𝑑𝑑?

• Consider 𝑓𝑓 𝒙𝒙 ≔ dist 𝒙𝒙,𝑉𝑉  for 𝒙𝒙 ∈ −1,1 𝑛𝑛

• For any 𝑖𝑖 ∈ 𝑛𝑛 , by triangle inequality,
𝐷𝐷𝑖𝑖𝑓𝑓 𝒙𝒙 = dist 𝒙𝒙−𝑖𝑖 ,𝑉𝑉 − dist 𝒙𝒙,𝑉𝑉 ≤ 𝒙𝒙 − 𝒙𝒙−𝑖𝑖 2 = 2

• By the bounded differences inequality,  Pr dist 𝒙𝒙,𝑉𝑉 − 𝑛𝑛 − 𝑑𝑑 ≥ 𝑡𝑡 ≤ 2𝑒𝑒− ⁄2𝑡𝑡2 𝑛𝑛

• Useless since dist 𝒙𝒙,𝑉𝑉 ≤ dist 𝒙𝒙,𝟎𝟎 = 𝑛𝑛
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Let 𝑉𝑉 be a fixed 𝑑𝑑-dimensional subspace. Let 𝒙𝒙 ∼ Unif −1,1 𝑛𝑛. How well is dist 𝒙𝒙,𝑉𝑉  
concentrated?

• Let 𝑃𝑃 be the orthogonal projection onto 𝑉𝑉⊥. Then, tr 𝑃𝑃 = dim 𝑉𝑉⊥ = 𝑛𝑛 − 𝑑𝑑

• dist 𝒙𝒙,𝑉𝑉 2 = 𝑃𝑃𝒙𝒙 ⋅ 𝑃𝑃𝒙𝒙 = 𝒙𝒙⊤𝑃𝑃𝒙𝒙 = ∑𝑖𝑖,𝑗𝑗∈ 𝑛𝑛 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑃𝑃𝑖𝑖𝑖𝑖

• Thus, 𝔼𝔼 dist 𝑥𝑥,𝑉𝑉 2 = ∑𝑖𝑖∈ 𝑛𝑛 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑛𝑛 − 𝑑𝑑

How well is dist 𝒙𝒙,𝑉𝑉  concentrated around 𝑛𝑛 − 𝑑𝑑?

Corollary (Talagrand’s inequality).  For 𝒙𝒙 ∼ Unif −1,1 𝑛𝑛, we have

Pr dist 𝒙𝒙,𝑉𝑉 − 𝑛𝑛 − 𝑑𝑑 ≥ 𝑡𝑡 ≤ 𝐶𝐶𝑒𝑒−𝑐𝑐𝑡𝑡2

where 𝐶𝐶, 𝑐𝑐 are universal constants
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Theorem (Talagrand).

Let 𝐴𝐴 ⊆ ℝ𝑛𝑛 be a convex set. Let 𝒙𝒙 ∼ Unif 0,1 𝑛𝑛. Then

Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr dist 𝒙𝒙,𝐴𝐴 ≥ 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4 ∀𝑡𝑡 ≥ 0

Equivalently, for a convex 1-Lipschitz function 𝑓𝑓:ℝ𝑛𝑛 → ℝ (i.e., 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 ≤ 𝑥𝑥 − 𝑦𝑦 2 
for any 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑛𝑛) and 𝒙𝒙 ∼ Unif 0,1 𝑛𝑛,

Pr 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 Pr 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟 + 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4 ∀𝑟𝑟 ∈ ℝ, 𝑡𝑡 ≥ 0

Proof of the equivalence.

• “⟹”:  let 𝐴𝐴 ≔ 𝑥𝑥 ∈ ℝ𝑛𝑛 ∶ 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 . Then 𝑓𝑓 is convex implies that 𝐴𝐴 is convex. We also have dist 𝑥𝑥,𝐴𝐴 ≤
𝑡𝑡 ⟹ 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 + 𝑡𝑡 by the 1-Lipschitzness. Thus, Pr 𝑓𝑓 𝒙𝒙 ≤ 𝑟𝑟 = Pr 𝒙𝒙 ∈ 𝐴𝐴  and Pr 𝑓𝑓 𝒙𝒙 ≥ 𝑟𝑟 + 𝑡𝑡 ≤
Pr dist 𝒙𝒙,𝐴𝐴 ≥ 𝑡𝑡

• “⟸”: let 𝑟𝑟 = 0 and 𝑓𝑓 𝑥𝑥 = dist 𝑥𝑥,𝐴𝐴
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Theorem (Talagrand).

For a convex 1-Lipschitz function 𝑓𝑓:ℝ𝑛𝑛 → ℝ (i.e., 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 ≤ 𝑥𝑥 − 𝑦𝑦 2 for any 𝑥𝑥,𝑦𝑦 ∈
ℝ𝑛𝑛) and 𝒙𝒙 ∼ Unif 0,1 𝑛𝑛,

Pr 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 Pr 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟 + 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4 ∀𝑟𝑟 ∈ ℝ, 𝑡𝑡 ≥ 0

Corollary.  Let med 𝑋𝑋  be the median of the random variable 𝑋𝑋. That is, Pr 𝑋𝑋 ≥ med 𝑋𝑋 ≥ ⁄1 2 
and Pr 𝑋𝑋 ≤ med 𝑋𝑋 ≥ ⁄1 2. Then, for a convex 1-Lipschitz function 𝑓𝑓:ℝ𝑛𝑛 → ℝ and 𝒙𝒙 ∼
Unif 0,1 𝑛𝑛,

Pr 𝑓𝑓 𝑥𝑥 − med 𝑓𝑓 𝑥𝑥 ≥ 𝑡𝑡 ≤ 4𝑒𝑒−𝑡𝑡2∕4

Proof.

• Let 𝑟𝑟 ≔ med 𝑓𝑓 𝒙𝒙 . Then Pr 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 ≥ ⁄1 2 and Pr 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟 + 𝑡𝑡 ≤ 2𝑒𝑒− ⁄𝑡𝑡2 4

• Let 𝑟𝑟 ≔ med 𝑓𝑓 𝒙𝒙 − 𝑡𝑡. Then Pr 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟 + 𝑡𝑡 ≥ ⁄1 2 Pr 𝑓𝑓 𝑥𝑥 ≤ 𝑟𝑟 ≤ 2𝑒𝑒− ⁄𝑡𝑡2 4 ∎



Talagrand’s Inequality: Convex Distance

February 2, 2026 18

Let the probability space be Ω = Ω1 × ⋯× Ω𝑛𝑛 with product probability measure

Weighted Hamming distance 

• Given 𝛼𝛼 ∈ ℝ≥0
𝑛𝑛 , 𝑥𝑥,𝑦𝑦 ∈ Ω, define

𝑑𝑑𝛼𝛼 𝑥𝑥,𝑦𝑦 ≔�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

• For a subset 𝐴𝐴 ⊆ Ω, 𝑑𝑑𝛼𝛼 𝑥𝑥,𝐴𝐴 ≔ inf
𝑦𝑦∈𝐴𝐴

𝑑𝑑𝛼𝛼 𝑥𝑥,𝑦𝑦

Talagrand’s convex distance

• For 𝑥𝑥 ∈ Ω and 𝐴𝐴 ⊆ Ω,
𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 ≔ sup

𝛼𝛼∈ℝ≥0𝑛𝑛

𝛼𝛼 2=1

𝑑𝑑𝛼𝛼 𝑥𝑥,𝐴𝐴
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Let the probability space be Ω = Ω1 × ⋯× Ω𝑛𝑛 with product probability measure

Talagrand’s convex distance

𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 ≔ sup
𝛼𝛼∈ℝ≥0𝑛𝑛

𝛼𝛼 2=1

inf
𝑦𝑦∈𝐴𝐴

 �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

Properties:

• If 𝐴𝐴 ⊆ 0,1 𝑛𝑛 and 𝑥𝑥 ∈ 0,1 𝑛𝑛, then 𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 = dist 𝑥𝑥, conv 𝐴𝐴

• For any 𝑥𝑥 ∈ Ω, define 𝜙𝜙𝑥𝑥 𝑦𝑦 ≔ 𝟏𝟏 𝑥𝑥1 ≠ 𝑦𝑦1 , … ,𝟏𝟏 𝑥𝑥𝑛𝑛 ≠ 𝑦𝑦𝑛𝑛 ∈ 0,1 𝑛𝑛, and 𝜙𝜙𝑥𝑥 𝐴𝐴 ≔
𝜙𝜙𝑥𝑥 𝑦𝑦 ∶ 𝑦𝑦 ∈ 𝐴𝐴 ⊆ 0,1 𝑛𝑛 for any 𝐴𝐴 ⊆ Ω. Then 

𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 = dist 𝟎𝟎, conv 𝜙𝜙𝑥𝑥 𝐴𝐴
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Theorem (Talagrand’s inequality, general form).

Let 𝐴𝐴 ⊆ Ω = Ω1 × ⋯× Ω𝑛𝑛, and 𝒙𝒙 ∼ Ω be chosen randomly with independent 
coordinates. Then

Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr 𝑑𝑑𝑇𝑇 𝒙𝒙,𝐴𝐴 ≥ 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4
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Theorem (Talagrand’s inequality, functions with weighted certificates).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Suppose that

𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 −�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖 𝑥𝑥 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖  ∀𝑥𝑥,𝑦𝑦 ∈ Ω

Then,

Pr 𝑓𝑓 𝒙𝒙 − med 𝑓𝑓 𝒙𝒙 ≥ 𝑡𝑡 ≤ 4𝑒𝑒− ⁄𝑡𝑡2 𝜈𝜈2 ,  𝜈𝜈 ≔ 2 sup
𝑥𝑥∈Ω

𝛼𝛼 𝑥𝑥 2
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Theorem (Talagrand’s inequality, functions with weighted certificates).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Suppose that 𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 − ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖 𝑥𝑥 𝟏𝟏[
]

𝑥𝑥𝑖𝑖 ≠
𝑦𝑦𝑖𝑖  for any 𝑥𝑥,𝑦𝑦 ∈ Ω. Then, for 𝜈𝜈2 ≔ 4 sup

𝑥𝑥∈Ω
𝛼𝛼 𝑥𝑥 2

2,

Pr 𝑓𝑓 𝑥𝑥 − med 𝑓𝑓 𝑥𝑥 ≥ 𝑡𝑡 ≤ 4𝑒𝑒− ⁄𝑡𝑡2 𝜈𝜈2

Proof.

• For 𝑟𝑟 ∈ ℝ, let 𝐴𝐴 ≔ 𝑦𝑦 ∶ 𝑓𝑓 𝑦𝑦 ≤ 𝑟𝑟 − 𝑡𝑡

• For any 𝑥𝑥 ∈ Ω such that 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟, the assumption gives that
∃𝛼𝛼 𝑥𝑥 ∈ ℝ≥0

𝑛𝑛 ,∀𝑦𝑦 ∈ 𝐴𝐴, 𝑑𝑑𝛼𝛼 𝑥𝑥 𝑥𝑥, 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 ≥ 𝑟𝑟 − 𝑟𝑟 − 𝑡𝑡 = 𝑡𝑡

• Then, we have 𝑑𝑑𝛼𝛼 𝑥𝑥 𝑥𝑥,𝐴𝐴 ≥ 𝑡𝑡 and  𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 ≥ ⁄𝑡𝑡 𝛼𝛼 𝑥𝑥 2 ≥ ⁄2𝑡𝑡 𝜈𝜈
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Theorem (Talagrand’s inequality, functions with weighted certificates).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Suppose that 𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 − ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖 𝑥𝑥 𝟏𝟏[
]

𝑥𝑥𝑖𝑖 ≠
𝑦𝑦𝑖𝑖  for any 𝑥𝑥,𝑦𝑦 ∈ Ω. Then, for 𝜈𝜈2 ≔ 4 sup

𝑥𝑥∈Ω
𝛼𝛼 𝑥𝑥 2

2,

Pr 𝑓𝑓 𝑥𝑥 − med 𝑓𝑓 𝑥𝑥 ≥ 𝑡𝑡 ≤ 4𝑒𝑒− ⁄𝑡𝑡2 𝜈𝜈2 , 

Proof.

• Then, we have 𝑑𝑑𝛼𝛼 𝑥𝑥 𝑥𝑥,𝐴𝐴 ≥ 𝑡𝑡 and  𝑑𝑑𝑇𝑇 𝑥𝑥,𝐴𝐴 ≥ ⁄𝑡𝑡 𝛼𝛼 𝑥𝑥 2 ≥ ⁄2𝑡𝑡 𝜈𝜈

• By Talagrand’s inequality (general form),

Pr 𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡 Pr 𝑓𝑓 ≥ 𝑟𝑟 ≤ Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr 𝑑𝑑𝑇𝑇 𝒙𝒙,𝐴𝐴 ≥
2𝑡𝑡
𝜈𝜈

≤ 𝑒𝑒−𝑡𝑡2∕𝜈𝜈2

• The result then follows by taking 𝑟𝑟 ≔ med 𝑓𝑓 + 𝑡𝑡 and 𝑟𝑟 ≔ med 𝑓𝑓  
∎
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For any real random variable 𝑋𝑋 satisfying
Pr 𝑋𝑋 −𝑚𝑚 ≥ 𝑡𝑡 ≤ 2𝑒𝑒− ⁄𝑡𝑡2 𝜎𝜎2  ∀𝑡𝑡 ≥ 0

for some 𝑚𝑚 ∈ ℝ and 𝜎𝜎 > 0, then the followings hold:

1. med 𝑋𝑋 −𝑚𝑚 ≤ 𝐶𝐶𝐶𝐶

2. 𝔼𝔼 𝑋𝑋 −𝑚𝑚 ≤ 𝐶𝐶𝐶𝐶

3.  For every constant 𝐴𝐴, if 𝑚𝑚′ − 𝑚𝑚 ≤ 𝐴𝐴𝐴𝐴, then
Pr 𝑋𝑋 −𝑚𝑚′ ≥ 𝑡𝑡 ≤ 2𝑒𝑒−Ω ⁄𝑡𝑡2 𝜎𝜎2  ∀𝑡𝑡 ≥ 0
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• We can rescale 𝑋𝑋 so that 𝜎𝜎 = 1

• For the median, take 𝑡𝑡 > 2 log 2:

Pr 𝑋𝑋 −𝑚𝑚 > 2 log 2 ≤ 𝑒𝑒−𝑡𝑡2 < ⁄1 2
Thus, med 𝑋𝑋  is within 2 log 2 of 𝑚𝑚

• For the mean, 

𝔼𝔼 𝑋𝑋 −𝑚𝑚 ≤ 𝔼𝔼 𝑋𝑋 −𝑚𝑚 = �
0

∞
Pr 𝑋𝑋 −𝑚𝑚 ≥ 𝑡𝑡 d𝑡𝑡 ≤ 2�

0

∞
𝑒𝑒−𝑡𝑡2d𝑡𝑡 = 𝜋𝜋

• For the last inequality, since 𝐴𝐴 is constant, by choosing a sufficiently small 𝑐𝑐 > 0, we can let 2𝑒𝑒−𝑐𝑐𝑡𝑡2 ≥ 1 

when 𝑡𝑡 ≤ 2𝐴𝐴 (e.g., 𝑐𝑐 = 1
10𝐴𝐴2

). Then, for 𝑡𝑡 > 2𝐴𝐴, we have

Pr 𝑋𝑋 −𝑚𝑚′ ≥ 𝑡𝑡 ≤ Pr 𝑋𝑋 −𝑚𝑚 ≥ ⁄𝑡𝑡 2 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4

∎
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• Subgaussian and Subgamma Random Variable

• The Entropy Method

• Talagrand’s Inequality

• Applications: LIS and TSP
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An increasing subsequence of a permutation 𝜎𝜎 = 𝜎𝜎1, … ,𝜎𝜎𝑛𝑛  is defined to be some 𝜎𝜎𝑖𝑖1 < ⋯ < 𝜎𝜎𝑖𝑖ℓ  
for some 𝑖𝑖1 < ⋯ < 𝑖𝑖ℓ. 

How well is the length 𝑋𝑋 of the longest increasing subsequence of uniformly random permutation 
concentrated?

Example:  𝜎𝜎 = (2, 1, 8, 7, 4, 5, 6, 3)

• You can show that 𝔼𝔼 𝑋𝑋 = Θ 𝑛𝑛  (A good exercise of binomial coefficient approximation)

• For concentration, there is one problem: 𝜎𝜎1, … ,𝜎𝜎𝑛𝑛 are not independent

• You can sample 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∼𝑖𝑖𝑖𝑖𝑖𝑖 Unif 0,1 , and their ordering gives a random permutation

• Talagrand’s inequality ⟹ 𝑋𝑋 = Θ 𝑛𝑛 ± 𝒪𝒪 𝑛𝑛 ⁄1 4  w.h.p.
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Let Ω = Ω1 × ⋯× Ω𝑛𝑛 and 𝐴𝐴 ⊆ Ω. We say 𝐴𝐴 is 𝑠𝑠-certifiable if for every 𝑥𝑥 ∈ 𝐴𝐴, there exists a subset 
𝐼𝐼 ⊂ 𝑛𝑛  with 𝐼𝐼 ≤ 𝑠𝑠 such that for every 𝑦𝑦 ∈ Ω, if 𝑦𝑦𝐼𝐼 = 𝑥𝑥𝐼𝐼, then 𝑦𝑦 ∈ 𝐴𝐴 

 For LIS, Ω = 0,1 𝑛𝑛 and 𝐴𝐴 = 𝑥𝑥 ∈ 0,1 𝑛𝑛 ∶ LIS 𝑥𝑥 ≥ 𝑘𝑘 . Then 𝐴𝐴 is 𝑘𝑘-certifiable since we just 
need to check 𝑘𝑘 coordinates to determine an increasing subsequence of length 𝑘𝑘

Theorem (Talagrand’s inequality for certifiable functions).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Let 𝑓𝑓:Ω → ℝ be 1-Lipschitz with respect to Hamming 
distance on Ω. Suppose that 𝑥𝑥 ∈ Ω ∶ 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟  is 𝑟𝑟-certifiable. Then, for 𝑚𝑚 = med 𝑓𝑓 𝑥𝑥 ,

Pr 𝑓𝑓 𝒙𝒙 ≤ 𝑚𝑚 − 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4𝑚𝑚

Pr 𝑓𝑓 𝒙𝒙 ≥ 𝑚𝑚 + 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4 𝑚𝑚+𝑡𝑡

 For 𝑥𝑥 ∈ 0,1 𝑛𝑛, let 𝑓𝑓 𝑥𝑥 ≔ LIS 𝑥𝑥 . Then 𝑓𝑓 is 1-Lipschitz (since changing one coordinate can 
change the LIS by at most 1). It is easy to show that 𝑚𝑚 = Θ 𝑛𝑛 . The above theorem implies 
the desired concentration bound.
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Theorem (Talagrand’s inequality for certifiable functions).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Let 𝑓𝑓:Ω → ℝ be 1-Lipschitz with respect to Hamming 
distance on Ω. Suppose that 𝑥𝑥 ∈ Ω ∶ 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟  is 𝑟𝑟-certifiable. Then, for 𝑚𝑚 = med 𝑓𝑓 𝑥𝑥 ,

Pr 𝑓𝑓 𝒙𝒙 ≤ 𝑚𝑚 − 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4𝑚𝑚

Pr 𝑓𝑓 𝒙𝒙 ≥ 𝑚𝑚 + 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4 𝑚𝑚+𝑡𝑡

Proof.

• Let 𝐴𝐴 ≔ 𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡  and 𝐵𝐵 ≔ {𝑓𝑓 ≥ 𝑟𝑟}. We first show that Pr[𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡] Pr 𝑓𝑓 ≥ 𝑟𝑟 ≤ 𝑒𝑒−𝑡𝑡2∕ 4𝑟𝑟

• 𝐵𝐵 is 𝑟𝑟-certifiable, so for every 𝑦𝑦 ∈ 𝐵𝐵, let 𝐼𝐼 𝑦𝑦  denote its certificate with 𝐼𝐼 𝑦𝑦 ≤ 𝑟𝑟

• By the 1-Lipschitzness of 𝑓𝑓, for every 𝑥𝑥 ∈ 𝐴𝐴, 𝑡𝑡 ≤ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 ≤ 𝑑𝑑𝐻𝐻 𝑥𝑥,𝑦𝑦

• We want to apply Talagrand’s inequality (the general form):
Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr 𝑑𝑑𝑇𝑇 𝒙𝒙,𝐴𝐴 ≥ 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4

• For 𝑖𝑖 ∈ [𝑛𝑛], define 𝛼𝛼𝑖𝑖 𝑦𝑦 ≔ ⁄1 𝐼𝐼 𝑦𝑦  for 𝑖𝑖 ∈ 𝐼𝐼 𝑦𝑦  and 𝛼𝛼𝑖𝑖 𝑦𝑦 ≔ 0 otherwise. Then, 

𝛼𝛼 𝑦𝑦 2 = 1, 𝑑𝑑𝛼𝛼 𝑥𝑥, 𝑦𝑦 ≥ ⁄𝑡𝑡 𝐼𝐼 𝑦𝑦 ≥ ⁄𝑡𝑡 𝑟𝑟  ∀𝑥𝑥 ∈ 𝐴𝐴
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Theorem (Talagrand’s inequality for certifiable functions).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Let 𝑓𝑓:Ω → ℝ be 1-Lipschitz with respect to Hamming 
distance on Ω. Suppose that 𝑥𝑥 ∈ Ω ∶ 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟  is 𝑟𝑟-certifiable. Then, for 𝑚𝑚 = med 𝑓𝑓 𝑥𝑥 ,

Pr 𝑓𝑓 𝒙𝒙 ≤ 𝑚𝑚 − 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4𝑚𝑚

Pr 𝑓𝑓 𝒙𝒙 ≥ 𝑚𝑚 + 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4 𝑚𝑚+𝑡𝑡

Proof.

• Let 𝐴𝐴 ≔ 𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡  and 𝐵𝐵 ≔ {𝑓𝑓 ≥ 𝑟𝑟}. We first show that Pr[𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡] Pr 𝑓𝑓 ≥ 𝑟𝑟 ≤ 𝑒𝑒−𝑡𝑡2∕ 4𝑟𝑟

• We want to apply Talagrand’s inequality (the general form):
Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr 𝑑𝑑𝑇𝑇 𝒙𝒙,𝐴𝐴 ≥ 𝑡𝑡 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4

• For 𝑖𝑖 ∈ [𝑛𝑛], define 𝛼𝛼𝑖𝑖 𝑦𝑦 ≔ ⁄1 𝐼𝐼 𝑦𝑦  for 𝑖𝑖 ∈ 𝐼𝐼 𝑦𝑦  and 𝛼𝛼𝑖𝑖 𝑦𝑦 ≔ 0 otherwise. Then, 

𝛼𝛼 𝑦𝑦 2 = 1, 𝑑𝑑𝛼𝛼 𝑥𝑥, 𝑦𝑦 ≥ ⁄𝑡𝑡 𝐼𝐼 𝑦𝑦 ≥ ⁄𝑡𝑡 𝑟𝑟  ∀𝑥𝑥 ∈ 𝐴𝐴

• Thus, 𝑑𝑑𝑇𝑇 𝑦𝑦,𝐴𝐴 ≥ ⁄𝑡𝑡 𝑟𝑟 for every 𝑦𝑦 ∈ 𝐵𝐵

Pr[𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡] Pr 𝑓𝑓 ≥ 𝑟𝑟 ≤ Pr 𝒙𝒙 ∈ 𝐴𝐴 Pr 𝑑𝑑𝑇𝑇 𝒙𝒙,𝐴𝐴 ≥ ⁄𝑡𝑡 𝑟𝑟 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4𝑟𝑟
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Theorem (Talagrand’s inequality for certifiable functions).

Let 𝒙𝒙 ∼ Ω with independent coordinates. Let 𝑓𝑓:Ω → ℝ be 1-Lipschitz with respect to Hamming 
distance on Ω. Suppose that 𝑥𝑥 ∈ Ω ∶ 𝑓𝑓 𝑥𝑥 ≥ 𝑟𝑟  is 𝑟𝑟-certifiable. Then, for 𝑚𝑚 = med 𝑓𝑓 𝑥𝑥 ,

Pr 𝑓𝑓 𝒙𝒙 ≤ 𝑚𝑚 − 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4𝑚𝑚

Pr 𝑓𝑓 𝒙𝒙 ≥ 𝑚𝑚 + 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 4 𝑚𝑚+𝑡𝑡

Proof.

Pr[𝑓𝑓 ≤ 𝑟𝑟 − 𝑡𝑡] Pr 𝑓𝑓 ≥ 𝑟𝑟 ≤ 𝑒𝑒− ⁄𝑡𝑡2 4𝑟𝑟

• The lower tail in the theorem follows from taking 𝑟𝑟 = 𝑚𝑚

• The upper tail in the theorem follows from taking 𝑟𝑟 = 𝑚𝑚 + 𝑡𝑡

∎
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An increasing subsequence of a permutation 𝜎𝜎 = 𝜎𝜎1, … ,𝜎𝜎𝑛𝑛  is defined to be some 𝜎𝜎𝑖𝑖1 < ⋯ < 𝜎𝜎𝑖𝑖ℓ  
for some 𝑖𝑖1 < ⋯ < 𝑖𝑖ℓ. 

How well is the length 𝑋𝑋 of the longest increasing subsequence of uniformly random permutation 
concentrated?

• Talagrand’s inequality ⟹ 𝑋𝑋 = Θ 𝑛𝑛 ± 𝒪𝒪 𝑛𝑛 ⁄1 4  w.h.p.

• Final remark: the correct order of the fluctuation is 𝑛𝑛 ⁄1 6 (Baik-Deift-Johansson ’99). They 
showed that 𝑛𝑛− ⁄1 6 𝑋𝑋 − 2 𝑛𝑛  converges to the Tracy–Widom distribution
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Let 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛 ∈ 0,1 2 be uniformly random points in the unit square. The travelling salesman problem (TSP) 
is to find a tour through all the 𝑛𝑛 points with the shortest possible length:

TSP 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ≔ min
𝜋𝜋∈𝒮𝒮𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

d 𝑥𝑥𝜋𝜋 𝑖𝑖 , 𝑥𝑥𝜋𝜋 𝑖𝑖+1 ,  𝑥𝑥𝜋𝜋 𝑛𝑛+1 ≔ 𝑥𝑥𝜋𝜋 1

Here, d 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 2 is the Euclidean distance

• Let 𝐿𝐿𝑛𝑛 ≔ TSP 𝒙𝒙1, … ,𝒙𝒙𝑛𝑛  be the random variable of TSP length

• It is known that 𝔼𝔼 𝐿𝐿𝑛𝑛 = Θ 𝑛𝑛  

• We can show that 𝐿𝐿𝑛𝑛 is 16-subgaussian

Mona Lisa TSP Challenge
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Our plan is to apply the following version of Talagrand’s inequality:

Theorem. Let 𝒙𝒙 ∼ Ω with independent coordinates. Suppose that 𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 − ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖 𝑥𝑥 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖  for 
any 𝑥𝑥,𝑦𝑦 ∈ Ω. Then, for 𝜈𝜈2 ≔ 4 sup

𝑥𝑥∈Ω
𝛼𝛼 𝑥𝑥 2

2, Pr 𝑓𝑓 𝒙𝒙 − med 𝑓𝑓 𝒙𝒙 ≥ 𝑡𝑡 ≤ 4𝑒𝑒− ⁄𝑡𝑡2 𝜈𝜈2

• Let Ω = 𝑋𝑋 ≔ 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∶ 𝑥𝑥𝑖𝑖 ∈ 0,1 2  and 𝑓𝑓 𝑋𝑋 ≔ TSP 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• We need to construct a certificate 𝛼𝛼 𝑋𝑋  such that for any two inputs 𝑋𝑋 and 𝑌𝑌,

𝑓𝑓 𝑋𝑋 ≤ 𝑓𝑓 𝑌𝑌 + �
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖 𝑋𝑋 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

• We’ll show how to merge a tour of 𝑥𝑥 and the optimal tour of 𝑦𝑦 and obtain a tour of 𝑥𝑥 ∪ 𝑦𝑦 of length 
ℓ𝑋𝑋∪𝑌𝑌 ≤ 𝑓𝑓 𝑌𝑌 + ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖 𝑋𝑋 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

• Then, by removing the points not in 𝑥𝑥, the length is non-increasing. Thus, 𝑓𝑓 𝑋𝑋 ≤ ℓ𝑋𝑋∪𝑌𝑌
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We need the following geometric lemma (related to the Sierpiński curve):

Lemma.  For any 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 2, there exists a permutation 𝜎𝜎 such that

d 𝑥𝑥𝜎𝜎 1 , 𝑥𝑥𝜎𝜎 2
2 + d 𝑥𝑥𝜎𝜎 2 , 𝑥𝑥𝜎𝜎 3

2 + ⋯+ d 𝑥𝑥𝜎𝜎 𝑛𝑛−1 , 𝑥𝑥𝜎𝜎 𝑛𝑛
2 + d 𝑥𝑥𝜎𝜎 𝑛𝑛 , 𝑥𝑥𝜎𝜎 1

2 ≤ 4

Proof.

𝑢𝑢

𝑣𝑣𝑤𝑤

𝑥𝑥

Pythagorean Inequality:

d 𝑥𝑥,𝑢𝑢 2 + d 𝑥𝑥, 𝑣𝑣 2 ≤ d 𝑢𝑢, 𝑣𝑣 2

𝑢𝑢

𝑣𝑣𝑤𝑤

d 𝑢𝑢, 𝑥𝑥𝜏𝜏 1
2 + �

𝑖𝑖=1

𝑚𝑚−1

d 𝑥𝑥𝜏𝜏(𝑖𝑖), 𝑥𝑥𝜏𝜏 𝑖𝑖+1
2

+d 𝑥𝑥𝜏𝜏 𝑚𝑚 ,𝑣𝑣 2 ≤ d 𝑢𝑢, 𝑣𝑣 2

Merge two triangles
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We need the following geometric lemma (related to the Sierpiński curve):

Lemma.  For any 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 2, there exists a permutation 𝜎𝜎 such that

d 𝑥𝑥𝜎𝜎 1 , 𝑥𝑥𝜎𝜎 2
2 + d 𝑥𝑥𝜎𝜎 2 , 𝑥𝑥𝜎𝜎 3

2 + ⋯+ d 𝑥𝑥𝜎𝜎 𝑛𝑛−1 , 𝑥𝑥𝜎𝜎 𝑛𝑛
2 + d 𝑥𝑥𝜎𝜎 𝑛𝑛 , 𝑥𝑥𝜎𝜎 1

2 ≤ 4

• For simplicity, we can consider 𝜎𝜎 as a function 𝜎𝜎:ℝ2 → ℝ2 such that 𝜎𝜎 𝑥𝑥𝜎𝜎 𝑖𝑖 ≔ 𝑥𝑥𝜎𝜎 𝑖𝑖−1  for any 𝑖𝑖 ∈ [𝑛𝑛] 
and 𝑥𝑥𝜎𝜎(0) ≔ 𝑥𝑥𝜎𝜎 𝑛𝑛 , i.e., the predecessor function 

• Then, the lemma is equivalent to 

�
𝑖𝑖=1

𝑛𝑛

d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖
2 ≤ 4
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1
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42

7

53
b

c

𝒚𝒚 = 1,2,3,4,5,6,7,8

 𝑓𝑓 𝒚𝒚 = dist 1 → 2 → ⋯ → 8 → 1  (optimal)

𝒙𝒙 = 1,2,4,6,8,𝑎𝑎, 𝑏𝑏, 𝑐𝑐  

Lemma ⟹ 𝜎𝜎 = 1 2 4 6 8 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑏𝑏 1 𝑎𝑎 4 𝑐𝑐 2 8 6  

How to merge the tours

1. Traverses along the optimal order of 𝑌𝑌

2. If the current point 𝑦𝑦𝑘𝑘 = 𝑥𝑥𝜎𝜎 𝑖𝑖  and 𝑥𝑥𝜎𝜎 𝑖𝑖+1 ∉ 𝑌𝑌:

i. Traverse along 𝑋𝑋’s tour just before it rejoins 𝑌𝑌’s tour

ii. Traverse backward and return to 𝑦𝑦𝑗𝑗

1 → 2 → 𝑎𝑎 → 2 → 3 → 4 → 5 → 6 → 𝑐𝑐 → 6 → 7 → 8
→ 𝑏𝑏 → 8 → 1
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a

1
8

6

42

7

53
b

c

a

1
8

6

42

7

53
b

c

𝒙𝒙 = 1,2,4,6,8,𝑎𝑎, 𝑏𝑏, 𝑐𝑐  

Lemma ⟹ 𝜎𝜎 = 1 2 4 6 8 𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑏𝑏 1 𝑎𝑎 4 𝑐𝑐 2 8 6  

How to merge the tours

1 → 2 → 𝑎𝑎 → 2 → 3 → 4 → 5 → 6 → 𝑐𝑐 → 6 → 7 → 8
→ 𝑏𝑏 → 8 → 1

ℓ𝑋𝑋∪𝑌𝑌 = 𝑓𝑓 𝑌𝑌 + �
𝑖𝑖=1

𝑛𝑛

2d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖 𝟏𝟏[𝑥𝑥𝑖𝑖 ∉ 𝑌𝑌]𝑓𝑓 𝑋𝑋 ≤ 𝑓𝑓 𝑌𝑌 + �
𝑖𝑖=1

𝑛𝑛

2d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖 𝟏𝟏 𝑥𝑥𝑖𝑖 ∉ 𝑌𝑌

≤ 𝑓𝑓 𝑌𝑌 + �
𝑖𝑖=1

𝑛𝑛

2d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

𝒚𝒚 = 1,2,3,4,5,6,7,8

 𝑓𝑓 𝒚𝒚 = dist 1 → 2 → ⋯ → 8 → 1  (optimal)
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𝑓𝑓 𝑋𝑋 ≤ 𝑓𝑓 𝑌𝑌 + �
𝑖𝑖=1

𝑛𝑛

2d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖 𝟏𝟏 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖

• Let 𝛼𝛼𝑖𝑖 𝑋𝑋 ≔ 2d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖

• The geometric lemma gives that 

𝛼𝛼 𝑋𝑋 2
2 = 4�

𝑖𝑖=1

𝑛𝑛

d 𝑥𝑥𝑖𝑖 ,𝜎𝜎 𝑥𝑥𝑖𝑖
2 ≤ 16

• Thus, by Talagrand’s inequality,
Pr 𝑓𝑓 𝑿𝑿 − med 𝑓𝑓 𝑿𝑿 ≥ 𝑡𝑡 ≤ 4𝑒𝑒− ⁄𝑡𝑡2 16

• That is, 𝐿𝐿𝑛𝑛 = 𝑓𝑓(𝑿𝑿) is 16-subgaussian

∎


	Slide Number 1
	Today’s Lecture
	Subgaussian Random Variable
	Subgaussian Random Variable
	Subgamma Random Variable
	Subgamma Random Variable
	Today’s Lecture
	The Entropy Method
	Proof of Herbst Lemma
	The Entropy Method
	The Entropy Method: Sharper Bounded Differences
	The Entropy Method: Sharper Bounded Difference
	The Entropy Method: Sharper Bounded Difference
	Today’s Lecture
	Talagrand’s Inequality: Motivating Question
	Talagrand’s Inequality: Motivating Question
	Talagrand’s Inequality: Convex Lipschitz Functions
	Talagrand’s Inequality: Convex Lipschitz Functions
	Talagrand’s Inequality: Convex Distance
	Talagrand’s Inequality: Convex Distance
	Talagrand’s Inequality: Convex Distance
	Talagrand’s Inequality: Convex Distance
	Talagrand’s Inequality: Convex Distance
	Talagrand’s Inequality: Convex Distance
	Median vs. Mean
	Median vs. Mean (Proof)
	Today’s Lecture
	 Application 1: Longest Increasing Subsequence
	 Application 1: Longest Increasing Subsequence
	Slide Number 30
	Slide Number 31
	Slide Number 32
	 Application 1: Longest Increasing Subsequence
	Application 2: Euclidean TSP 
	Application 2: Euclidean TSP
	Application 2: Euclidean TSP
	Application 2: Euclidean TSP
	 Application 2: Euclidean TSP
	 Application 2: Euclidean TSP
	 Application 2: Euclidean TSP

