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Today’s Lecture

Subgaussian and Subgamma Random Variable
The Entropy Method
Talagrand’s Inequality

Applications: LIS and TSP
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Subgaussian Random Variable

A random variable X is called a%-subgaussian if its log-MGF satisfies
Y(0) = logE|exp(6(X — E[X]))]| < 6%6%/2 VOER

We call 62 the variance proxy.
Equivalently,
Pri|X — E[X]| = t] < 2e7t"/20°
E[|X — E[X]|¥] < o¥k¥k/? forany k € Z,

True Gaussian random variable V' (0, a2)

Bounded random variable: if a < X < b a.s., then X is (b — a)?/4-subgaussian
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Subgaussian Random Variable

A random variable X is called a%-subgaussian if its log-MGF satisfies
Y(0) = logE|exp(6(X — E[X]))]| < 6%6%/2 VOER

We call 62 the variance proxy.

Equivalently,
Pri|X — E[X]| = t] < 2e7t"/20°
E[|X — E[X]|¥] < o¥k¥k/? forany k € Z,

Lemma. If X;, X, are independent subgaussian random variables with variance proxy 012 and 022,
then X; + X, is (o + 04)-subgaussian

> It immediately recovers the Hoeffding’s inequality

February 2, 2026 3



Subgamma Random Variable

A random variable X is called (2, ¢)-subgamma if
0202 0202

YO S 5SS VIol<1/c

It holds that

(et
Pr[|X — E[X]| = t] < 2max le 202%,e 2c

If X ~ NV(0,1), then X? is (4,3)-subgamma
If X is 0%-subgaussian, then X is (62, 0)-subgamma
Bounded random variable: if | X — E[X]| < b a.s., then X is (Var|X], b/3)-subgamma

If X is (62, c)-subgamma, then aX is (a?0?, ac)-subgamma
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Subgamma Random Variable

A random variable X is called (2, ¢)-subgamma if
0202 0202
0) < <
Yo) < 2(1—-1|8|c) — 2

Vel <1/c
It holds that

(et
Pr[|X — E[X]| = t] < 2max le 202%,e 2c

Lemma. If X1, X, are independent subgamma random variables with parameters (¢, ¢;) and
(64,c,), then X; + X, is (62 + 62, max{cy, ¢, })-subgamma

> It immediately recovers the Bernstein inequality
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Today’s Lecture

Subgaussian and Subgamma Random Variable
The Entropy Method
Talagrand’s Inequality

Applications: LIS and TSP
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The Entropy Method

The entropy of a random variable X is defined as
Ent[X] := E[X log X] — E[X]log E[X]

Lemma (Herbst). Suppose that

2 2
Ent|e%*| < HTJIE[eQX] Ve >0

Then, X is o%-subgaussian.

Tensorization of entropy

For a function f(xq, ..., x;,), and for each i € [n], define
Ent;[f (x)] = Ent[f (xy, ..., X1, Xi) Xi41, -, X))

For independent random variables X4, ..., X,;, we have

Ent[f(X,, .., X,)] < E [2 Ent;[f(Xs, ..., X.)]
=1
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Proof of Herbst Lemma

Proof.
We’ll verify that ¥(6) = log IE[exp(H(X — IE[X]))] < 0%0?/2

Y(0) = log E[eb%| — 6E[X]

d [yY(6) _IE[XeHX] E[X] logE[e%%] IE[X]_[E[XQOX] log E[e®%]
d9< 0 )_HIE[eBX]_ 6 62 ' 9 6E[™ 0

Ent[e?*] = OE[Xe?*] ~ E[c?*] log E[e?

d (¥(0)\ _ Ent[e?] _ o2 :
Thus, — (—9 )— 07E[c0%] =< - by assumption

Then, we have

(0) (Y Ent[e™] 9 g2 052
o - JO P JO
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The Entropy Method

Lemma (Discrete Modified log-Sobolev (MLS) Inequality). Let f: IR — R and let
D™f(x) =f(x) - irylff )

Then for any random variable X,
Ent[e/®] < Cov[f (X),e/®] < E[ID™F(X)|2e/ ],

where Cov[X,Y] = E[XY] — E[X]E[Y]
Proof.

For the first inequality,

Entle/| = E[fe/| — E|e/|logE|e/| < E|fe/| — E|e/|E[f] = Cov|f,e/]
For the second inequality,
Cov|f,ef| = E|(f —inff)(ef — E|ef])] < E|(f — inff)(ef — e/ )]

The convexity of e* implies that e/ — e!™/ < e/ (f — inff)
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The Entropy Method: Sharper Bounded Differences

Define one-sided differences for multivariate function:
D f(x) = f(xq, .., xp) — irzlff(xl, iy i1y Zy Xjg 1y eeer X))

Dl+f(x) = Sup f(le ey Xi—10Z, Xij41) ...,Xn) o f(le "'an)
VA

Theorem (Bounded differences inequality).

Let X4, ..., X;, be independent random variables. Then, f (X3, ..., X;,) is subgaussian with variance
proxy 2||X™11D;f1%|l.. Moreover,
$2

Pr[f —E|[f]=>t] <exp| — >
4| zmaos |

t2

Pr[f —E[f] < —t] <exp| — >
4|z oI
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The Entropy Method: Sharper Bounded Difference

Theorem (Bounded differences inequality).

Let X4, ..., X;, be independent random variables. Then, f(Xy, ..., X},) is subgaussian with
variance proxy 2||X7 1 ID; f 1%l

Theorem (McDiarmid inequality).

Let X4, ..., X;, be independent random variables. Then, f(Xy, ..., X},) is subgaussian with

. 1
variance proxy - 21 [ Dif [I%

In many cases, ||X7;|D;f|*|l can be much smaller than Y™ . ||D; f|%
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The Entropy Method: Sharper Bounded Difference

Theorem (Bounded difference inequality).

Let X4, ..., X;, be independent random variables. Then, f (X, ..., X;,) is subgaussian with variance
proxy 2|| 211D f 1% [l o

Proof.

By the discrete MLS lemma,
Ent;[ef]| < E[ID; f12e Xy, oo, Xio1, Xig1, s Xun]
By tensorization, forany 8 = 0,

Enti[egf]‘ <E Kiw;(efnz) e9f] < 62

=1

n

> 1D f1

Ent[egf] < IE[
i=1

n

IE[eef]

1=1

(0]

We finish the proof by Herbst lemma.
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Today’s Lecture

- Subgaussian and Subgamma Random Variable
- The Entropy Method
- Talagrand’s Inequality

- Applications: LIS and TSP
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Talagrand’s Inequality: Motivating Question

Let V be a fixed d-dimensional subspace. Let x ~ Unif{—1,1}". How well is dist(x, V)
concentrated?

Let P be the orthogonal projection onto V+. Then, tr[P] = dim(VY) =n—d
dist(x,V)? = |Px - Px| = |x"Px| = X; je[n XiX; Pij
Thus, E[dist(x, V)?] = ¥ P =n—d
How well is dist(x, V) concentrated around vn — d?
Consider f(x) := dist(x, V) forx € {—1,1}"

For any i € [n], by triangle inequality,
ID;f ()| = |dist(x_;, V) — dist(x, V)| < [[x — x_;[; = 2

By the bounded differences inequality, Pr[|dist(x, V) —+n— d| > t] < 2e—2t?/n

Useless since dist(x, V) < dist(x,0) = +/n
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Talagrand’s Inequality: Motivating Question

Let V be a fixed d-dimensional subspace. Let x ~ Unif{—1,1}". How well is dist(x, V)

concentrated?
Let P be the orthogonal projection onto V+. Then, tr[P] = dim(VY) =n—d
dist(x,V)? = |Px - Px| = |x"Px| = ¥, jcny XX Pij

Thus, E[dist(x,V)?] = Xy Pu=n—d

How well is dist(x, V) concentrated around vn — d?

Corollary (Talagrand’s inequality). For x ~ Unif{—1,1}", we have
Pr[|dist(x, V) —+vn— d| > t] < Ce~ct

where C, ¢ are universal constants

February 2, 2026 15



Talagrand’s Inequality: Convex Lipschitz Functions

Theorem (Talagrand).

Let A € R™ be a convex set. Let x ~ Unif{0,1}". Then
Pr[x € A] Pr[dist(x,A) > t] < e t/* vt>0
Equivalently, for a convex 1-Lipschitz function f: R™ - R (i.e., [f(x) — f(W)] < |lx — vl
forany x,y € R") and x ~ Unif{0,1}",
Pr[f(x) <r]Pr[f(x) =r+t] < e~t’/*  vreRt=0
Proof of the equivalence.

“=" letA:={x € R": f(x) < r}. Then f is convex implies that A is convex. We also have dist(x, A) <
t = f(x) <r+tbythe 1-Lipschitzness. Thus, Pr[f(x) < r] =Pr[x € A]and Pr[f(x) = r + t] <
Pr[dist(x, A) = t]

“—=":letr = 0and f(x) = dist(x, A)
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Talagrand’s Inequality: Convex Lipschitz Functions

Theorem (Talagrand).

For a convex 1-Lipschitz function f: R"™ - R (i.e., |f(x) — f(¥)| < ||x — y||, forany x,y €
R™) and x ~ Unif{0,1}",

Prif(x) < 7r]Pr[f(x) =r+t]<et/* vreRt=0

Corollary. Let med(X) be the median of the random variable X. That is, Pr[X = med(X)] = 1/2
and Pr[X < med(X)] = 1/2. Then, for a convex 1-Lipschitz function f: R" - R and x ~
Unif{0,1}",

PI‘“f(x) — mEd(f(x))| > t] < Qeo—t?/4
Proof.
Let 7 :== med(f(x)). Then Pr[f(x) <7] = 1/2and Pr[f(x) =r +t] < 5 p—t2/4

Let  := med(f(x)) — t. Then Pr[f(x) = r + t] = 1/2 Pr[f(x) < r] < 2¢~"/*
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Talagrand’s Inequality: Convex Distance

Let the probability space be Q = () X --- X (},, with product probability measure
Weighted Hamming distance

Given a € RL,, x,y € Q, define

n

de(x,y) = ) adlx; # ¥l

=1

ForasubsetA € Q,d,(x,A) = ir€1£ da(x,y)
y

Talagrand’s convex distance

Forx € land 4 € (),
dr(x,A) == sup d,(x,A)

a€eRY,
llellz=1
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Talagrand’s Inequality: Convex Distance

Let the probability space be Q = () X --- X (},, with product probability measure

Talagrand’s convex distance

dr(x,A) == sup inf a;1|x; # y;]
a€R?, YEA =
lall,=1

Properties:
If A € {0,1}"* and x € {0,1}", thend;(x,A) = dist(x, conV(A))

For any x € (, define ¢, (y) == (A|xy # y.], ..., 1|x,, # y,]) € {0,1}", and ¢,.(A) =
{p(y) : y € A} € {0,1}" for any A € Q. Then

dr(x,A) = dist (O, conv(qu(A)))
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Talagrand’s Inequality: Convex Distance

Theorem (Talagrand’s inequality, general form).

letA S Q=0 X--XQ,,and x ~ ) be chosen randomly with independent
coordinates. Then

Pr[x € A] Pr[d(x,A) > t] < e t*/4
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Talagrand’s Inequality: Convex Distance

Theorem (Talagrand’s inequality, functions with weighted certificates).

Let x ~ () with independent coordinates. Suppose that

FO) 2 f@ - ) a1l #y] vryea
=1

Then,
Pr[|f(x) — med(f(x))l > t] < 4e~t°/V* v = 2sup|la(x)||,

XE()
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Talagrand’s Inequality: Convex Distance

Theorem (Talagrand’s inequality, functions with weighted certificates).

Let x ~ Q with independent coordinates. Suppose that f(y) = f(x) — Xt a;(x) 1[x; #

y;] for any x,y € Q. Then, for v := 4sug||a(x)||%,
xXe

Pr[|f(x) — med(f(x))| > t] < 4e~t*/Vv°
Proof.
ForreR, letA:={y: f(y) <r —t}

For any x € Q such that f(x) = r, the assumption gives that
Ja(x) € RY,,Vy € A, Aoy, y) =2 fxX)—fy)=zr—(@—-t)=t

Then, we have d () (x,A) = tand dr(x,4) = t/|la(x)|l; = 2t/v
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Talagrand’s Inequality: Convex Distance

Theorem (Talagrand’s inequality, functions with weighted certificates).

Let x ~ Q with independent coordinates. Suppose that f(y) = f(x) — Xt a;(x) 1[x; #

y;] for any x,y € Q. Then, for v := 4su8||a(x)||%,
xXe

Pr[|f(x) — med(f(x))| > t] < 4e t*/V*
Proof.
Then, we have dy () (x,A) = tand dr(x,4) = t/|la(x)|l; = 2t/v

By Talagrand’s inequality (general form),

< etV

Pr[f <r—t]|Pr[f =r] <Pr[x € A] Pr [dT(x,A) > %

The result then follows by taking r := med(f) + t and r := med(f)
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Median vs. Mean

For any real random variable X satisfying
Pr[|X —m| > t] <2e /9" vt>0
forsome m € R and o > 0, then the followings hold:

1. |med(X) —m| < Co
2. |E[X]—m| < Co

3. Forevery constant 4, if [m' — m| < Ao, then
Pri| X —m'| = t] < 2e~t*/0%)  yi >0

February 2, 2026 24



Median vs. Mean (Proof)

We canrescale X sothato =1

For the median, take t > /2 log 2:

Pr[IX —m| > ,/ZlogZ] <et < 1/2
Thus, med(X) is within \/21log 2 of m

For the mean,

(0.0) (00)

Pr[|X —m| = t]dt < ZJ e t’dt = L

IE[X] — m]| < E[IX — ml] =f
0

0

For the last inequality, since A is constant, by choosing a sufficiently small ¢ > 0, we can let 2e~¢t" > 1
1
1042

Pr[|X —m'| = t] <Pr[|X —m| > t/2] < e t/4

whent < 24 (e.g.,c = ). Then, fort > 24, we have
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Today’s Lecture

- Subgaussian and Subgamma Random Variable
- The Entropy Method
- Talagrand’s Inequality

- Applications: LIS and TSP

February 2, 2026 26



Application 1: Longest Increasing Subsequence

An increasing subsequence of a permutation o = (ay, ..., 0y,) is defined to be some 0;, < - < 0;,
forsomei; < -+ <.

How well is the length X of the longest increasing subsequence of uniformly random permutation
concentrated?

O- — (21 1) 8) 71 4) 5) 6’ 3)
You can show that E[X] = 0(/n)
For concentration, there is one problem: gy, ..., g,, are not independent

You can sample X4, ..., X;;, ~;;4 Unif[0,1], and their ordering gives a random permutation

Talagrand’s inequality = X = 0(yn) + 0(n*/*) w.h.p.
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Application 1: Longest Increasing Subsequence

let Q =Q X - X Q, and A € Q. We say A is s-certifiable if for every x € A, there exists a subset
I c [n] with |I| < s such that foreveryy € Q,if y; = x;,theny € A

> ForLIlS, Q0 =1[0,1]"and 4 = {x € [0,1]™ : LIS(x) = k}. Then A4 is k-certifiable since we just
need to check k coordinates to determine an increasing subsequence of length k

Theorem (Talagrand’s inequality for certifiable functions).

Let x ~ () with independent coordinates. Let f: ) = R be 1-Lipschitz with respect to Hamming
distance on Q. Suppose that {x € Q : f(x) = r}is r-certifiable. Then, form = med(f(x)),
Prif(x) <m—t] < 2e~t"/(4m)
Prif(x) =m+t] < 2e~t*/(4(m+D))

> Forx € [0,1]™, let f(x) := LIS(x). Then f is 1-Lipschitz (since changing one coordinate can
change the LIS by at most 1). It is easy to show that m = @(x/n). The above theorem implies
the desired concentration bound.
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Theorem (Talagrand’s inequality for certifiable functions).

Let x ~ () with independent coordinates. Let f: (0 = R be 1-Lipschitz with respect to Hamming
distance on (). Suppose that {x € Q : f(x) = r} is r-certifiable. Then, form = med(f(x)),
Prif(x) <m—t] < 2e~t%/(4m)
Prif(x) = m + t] < 2e~t*/(4(m+D)
Proof.
Let A:={f <r—t}and B = {f = r}. We first show that Pr[f <r —t]Pr[f =>r] < et/ (41)
B is r-certifiable, so for every y € B, let I(y) denote its certificate with [I(y)| < r
By the 1-Lipschitzness of f, foreveryx € A, t < [f(x) — f(¥)| < dy(x,y)

We want to apply Talagrand’s inequality (the general form):
Pr[x € A]Pr[d,(x,A) > t] < e t"/4

Fori € [n], define a;(y) := 1//|I(y)| fori € I(y) and a;(y) = 0 otherwise. Then,
lall, =1,  doCo,y) 2 t/JIG)| =t/r Vx€EA
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Theorem (Talagrand’s inequality for certifiable functions).

Let x ~ () with independent coordinates. Let f: () = R be 1-Lipschitz with respect to Hamming
distance on (). Suppose that {x € Q : f(x) = r} is r-certifiable. Then, form = med(f(x)),
Prf(x) < m—t] < 27t /04m)
Prif(x) = m + t] < 2e~t*/(4(m+D)
Proof.
let A == {f <r —t}and B := {f > r}. We first show that Pr[f < r — t] Pr[f =] < e t'/(47)

We want to apply Talagrand’s inequality (the general form):
Pr[x € A]Pr[d,(x,A) > t] < e t"/4

Fori € [n], define a;(y) := 1/\/Wy)| fori € I(y) and a;(y) := 0 otherwise. Then,
lall, =1,  doCe,y) 2 t/JIG)| = t/r Vx€EA
Thus, d7(y,A) = t/+/r foreveryy € B
Pr[f <r — t] Pr[f = r] < Pr[x € A] Pr[d;(x, A) = t/\[T] < e~ ¢/
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Theorem (Talagrand’s inequality for certifiable functions).

Let x ~ () with independent coordinates. Let f: () = R be 1-Lipschitz with respect to Hamming
distance on (). Suppose that {x € Q : f(x) = r} is r-certifiable. Then, form = med(f(x)),
Prif(x) <m—t] < 2e~t*/(4m)
Prif(x) = m + t] < 2et°/(4(m+D)

Proof.
Pr[f <r—t]Pr[f > 7] < e t/G")

The lower tail in the theorem follows from takingr = m

The upper tail in the theorem follows from takingr =m + t
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Application 1: Longest Increasing Subsequence

An increasing subsequence of a permutation o = (ay, ..., 0y,) is defined to be some 0;, < - < 0;,
forsome iy < -+ < ip.

How well is the length X of the longest increasing subsequence of uniformly random permutation
concentrated?

Talagrand’s inequality = X = 0(yn) + 0(n*/*) w.h.p.

Final remark: the correct order of the fluctuation is nl/6 (Baik-Deift-Johansson ‘99). They
showed that n~1/¢(X — 2+/n) converges to the Tracy—Widom distribution

February 2, 2026 32



Application 2: Euclidean TSP

Let x4, ..., X,, € [0,1]? be uniformly random points in the unit square. The travelling salesman problem (TSP)
is to find a tour through all the n points with the shortest possible length:

n

TSP(x4, ..., Xy) = min Z d(Xr(), Xrn@i+1)) Xn(n+1) = Xr(1)

TES,
=1

Here, d(x,y) = ||lx — y||, is the Euclidean distance
- LetL, = TSP(x4, ..., x,) be the random variable of TSP length

- Itis known that E[L,,] = 0(y/n)

- We can show that L,, is 16-subgaussian

Mona Lisa TSP Challenge
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Application 2: Euclidean TSP

Our plan is to apply the following version of Talagrand’s inequality:

Theorem. Let x ~ Q with independent coordinates. Suppose that f(y) = f(x) — Xiv; a; (x) 1[x; # y;] for
any x,y € Q. Then, for v2 := 4 suplla(x) |13, Pr|f(x) — med(f(x))| = t] < 4e-t"/V*

X€E()

Let O = {X :== (xq, ..., %,,) : x; € [0,1]?} and f(X) := TSP(xy, ..., X;,)

We need to construct a certificate a(X) such that for any two inputs X and Y,
n
FOOFM+ ) (0 1l # yi
i=1

We'll show how to merge a tour of x and the optimal tour of y and obtain a tour of x U y of length
Cxuy < f(Y) + X o (X) 1x; # y;]

Then, by removing the points not in x, the length is non-increasing. Thus, f(X) < fxuy
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Application 2: Euclidean TSP

We need the following geometric lemma (related to the Sierpinski curve):

Lemma. Forany xq,x5,...,X, € [0,1]2, there exists a permutation ¢ such that

d(Xo(1y Xoz)” + A(Xa@Xo() + -+ d(Xomo1) Xo) + Ao Xo(w) < 4

Proof.
u u
X
w % w 1%
h | m-—1
Pythagorean Inequality: 2 2
d(u xe)” + ), A% %) Merge two triangles

d(x,u)? + d(x,v)? < d(u, v)? i=1

+d(xz(m), v)z < d(u,v)?
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Application 2: Euclidean TSP

We need the following geometric lemma (related to the Sierpinski curve):

Lemma. Forany xq,x5,...,X, € [0,1]2, there exists a permutation ¢ such that

d(Xo(1y Xoz)” + A(Xa@Xo() + -+ d(Xomo1) Xo) + Ao Xo(w) < 4

For simplicity, we can consider ¢ as a function o: R*> = R? such that a(xa(i)) = Xg(j—1) forany i € [n]
and X4 (o) *= Xg(n), i-€., the predecessor function

Then, the lemma is equivalent to

z d(xi,a(xl-))z <4
i=1
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Application 2: Euclidean TSP

How to merge the tours

_--0
\

~ \e’ - -
y =1{1,2,3,4,5,6,7,8} 152-5a—->2->3-24-55-56>c->6->7-8
f(y) =dist(1 > 2 - .- > 8 - 1) (optimal) ~>b->8-1
x =1{1,2,4,6,8a,b,c} 1.  Traverses along the optimal order of Y
1 2 4 6 8 a b c 2. If the current point y, = x5 and X4(41) € Y
Lemma = o = ( )
b 1 a 4 ¢ 2 8 6 . Traverse along X’s tour just before it rejoins Y’s tour
i.  Traverse backward and return to y;
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Application 2: Euclidean TSP

How to merge the tours

-0
\

y = {1,2,3,4,5,6,7,8}
f(y) = dlSt(l -2 >5..58-> 1) (Optimal)

x =1{1,2,4,6,8,a,b,c}

12468abc)

Lemma=>a=(b 1 a 4 ¢c 2 8 6

February 2, 2026
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1-2-»>a-2-3-24-5-6->c->6—->7-8
- bh—->8-1

£6%) = F(N + ) 2d(x;,0(x))1[x; € Y]
i=1

<f¥)+ 2 2d(x;, 0(x))1[x; # v;]
i=1



Application 2: Euclidean TSP

FOO < FON+ ) 2d(x,0G))1lx # ¥
i=1

Let a;(X) := Zd(xi, U(xi))

The geometric lemma gives that

l€COI3 = 4 ) d(x, o))’ < 16
i=1

Thus, by Talagrand’s inequality,
Pr[|f(X) — med(F(X))| = ¢] < 4e~t"/16

Thatis, L,, = f(X) is 16-subgaussian
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